MAQUININHA PAGSEGURO

Aumente suas vendas aceitando débito e credito.
Compre em condições especiais pelo link:

Pró Letramento Matemática 2

Apresentação do fascículo 1
Cara professora ou caro professor, antes de você iniciar o seu trabalho neste fascículo, gostaríamos de apontar alguns dos pressupostos deste material. Em primeiro lugar, acreditamos que a Matemática é parte essencial da bagagem de todo cidadão com atuação crítica na sociedade. Num mundo cada vez mais complexo é preciso estimular e desenvolver habilidades que permitam resolver problemas, lidar com informações numéricas para tomar decisões, fazer inferências, opinar sobre temas diversos, desenvolvendo capacidades de comunicação e de trabalho coletivo, sempre de forma crítica e independente. Em qualquer atividade, o cidadão vai encontrar situações nas quais necessitará compreender, utilizar e reconstruir conceitos e procedimentos matemáticos. Assim, a Matemática escolar tem um papel formativo, ajudando a estruturar o pensamento e o raciocínio lógico. Além disso é uma ferramenta útil e com uma linguagem de expressão própria, necessária a diversas áreas do conhecimento. Em especial, a temática deste fascículo – Números Naturais – tem, nos anos iniciais de escolarização, um papel central neste processo. Você vai notar que este material foi estruturado como uma conversa entre colegas de profissão que têm muito a trocar. Este fascículo não tem a pretensão de esgotar o tema, mas busca motivá-lo a repensar seus conhecimentos e sua prática de ensino para estes conteúdos. Ele foi elaborado com a esperança de contagiar você com nosso desejo de um ensino de Matemática mais eficiente, mais prazeroso para os alunos e que a nós, professoras e professores, forneça opções seguras e testadas para trilhar uma renovação sem muitos sobressaltos e incertezas. Esperamos, sobretudo, incentivá-lo a buscar novas oportunidades para continuar estudando e crescendo profissionalmente. Acreditamos também que as experiências iniciais de uma criança costumam ser determinantes para sua atitude e interesse pela Matemática por toda sua vida. Assim, ao iniciar seu aluno no estudo dos números,você tem em mãos uma grande responsabilidade, e esperamos que este curso possa ajudá-lo a refletir sobre sua prática, buscando sempre seu aprimoramento profissional. As idéias exploradas no Fascículo 1 são oriundas do curso Números Naturais – Conteúdo e Forma, desenvolvido pelo LIMC, um dos Centros da Rede Nacional de Formação Continuada de Professores da Educação Básica na área de Ciências e Matemática. Como dispomos de menos tempo para o tema neste programa, foi necessário fazer escolhas.Assim, procuramos selecionar alguns dos conceitos e idéias fundamentais que poderão ajudar seus alunos a construir uma base sólida para continuar seus estudos. No entanto, por sua importância, o ensino de Números Naturais vai sempre exigir de você muita reflexão e uma busca constante por melhores estratégias de ensino. A fim de que este material possa servir como fonte para você repensar suas aulas de Matemática, será necessário estabelecer um contato especial com as atividades sugeridas, explorando-as de diversos pontos de vista: como aprendiz, para perceber seu potencial de gerar interesse e compreensão; como professora ou professor, para perceber suas possibilidades didáticas e, finalmente, como educadora ou educador para repensá-las, adaptando-as à sua realidade. Esperamos ainda estimular uma mudança de olhar sobre a produção de seus alunos e ajudar na reflexão sobre uma nova forma de avaliação, pois esta não deve se limitar à mera conferência de resultados. Para tal, apresentamos atividades desenvolvidas por alunos dos anos iniciais, a fim de que você possa comentar seus erros e acertos. Para finalizar, lembramos ainda que a experimentação, seguida da reflexão e do debate, será o principal investimento feito durante o estudo deste fascículo em seu próprio aperfeiçoamento. Nossa meta principal é estimular uma reavaliação de sua compreensão de conceitos, gerando reflexão, autoconfiança e liberdade criativa. Mas tudo isso depende muito de você, professora ou professor. Bom trabalho! As autoras, Beth e Mônica

Roteiro de trabalho para o primeiro encontro
Nosso primeiro encontro
Pensando Juntos

Os números naturais estão presentes em nosso cotidiano e são utilizados com os mais diversos propósitos. Utilizamos os números para realizar contagens, ou seja, para responder a perguntas do tipo “quantos?” (“35 alunos”, “meu álbum já tem 148 figurinhas”, “tenho 7 reais a mais que você” etc.). O conceito de número ajuda ainda a identificar um objeto de uma coleção ordenada, respondendo a perguntas do tipo “qual?” (“o quinto andar”, “o décimo quarto na fila de espera”, etc.) Mas há outras aplicações em que a estrutura dos números naturais não é aproveitada; nelas,eles são usados apenas como um sistema eficiente de códigos. Nestes casos, apesar de chamarmos estes registros de números (número do telefone, número do ônibus, etc.) não faz sentido compará-los (dizer “meu número de telefone é maior do que o seu!” não tem nenhum significado prático). A construção dos números naturais pela criança é a base para a ampliação do campo numérico que a vida em sociedade exige, como os números inteiros e racionais. As experiências iniciais são muito importantes neste longo processo, e cabe à escola ajudar na construção do pensamento matemático da criança. Sua sala de aula deve ser um lugar especial, que dá boas-vindas à Matemática, enriquecendo e sistematizando as experiências vividas dentro e fora desse espaço. Os números em nossas vidas Exemplifique alguns outros usos de números no cotidiano.
Tarefa 1
Observem atentamente a ilustração,


que sugere uma forma de trabalho na sala de aula.Cada participante deve se apresentar aos colegas e contar ao grupo algo sobre sua atuação profissional que a observação da imagem tenha lhe feito pensar. Discutam outras formas de trabalho possíveis na sala de aula, façam um registro destas idéias, escolham uma delas e sugiram uma ilustração que a reflita. Vamos agora saber um pouco mais sobre nosso trabalho,lendo o Guia do Curso e discutindo sua proposta. Trabalhando em grupo


1. Texto para leitura - Os números e sua representação
Ninguém sabe exatamente quando foram inventados os primeiros registros numéricos; sabe-se, porém, que povos pré-históricos, antes mesmo de possuírem uma linguagem escrita, grafavam o resultado de suas contagens, ou então grafavam o próprio ato de contar. Não sabemos ao certo, mas podemos imaginar estórias sobre o uso primitivo de contagens – anteriores até mesmo aos primeiros símbolos grafados. Imagine um pastor de ovelhas, preocupado em não perder nenhum animal de seu rebanho. Assim, ao soltá-las no pasto pela manhã, ele colocava uma pedrinha em um saco para cada ovelha que saía do cercado. Ao anoitecer,ao recolher os animais, era só retirar uma pedra para cada ovelha reconduzida ao cercado. Se não sobrasse nenhuma pedra, todas as ovelhas estariam a salvo. Caso contrário, era hora de sair à procura de ovelhas desgarradas. Cada pedra restante no saco correspondia a uma ovelha que não havia retornado. Se tais pastores realmente existiram ou são apenas lendas, uma idéia muito importante em Matemática foi contada: associar uma pedra a cada ovelha, permitia ao pastor “conferir” seu rebanho e tomar providências, quando necessárias, para recuperar animais perdidos. Como a idéia de passar o dia carregando um saco de pedras não é das mais agradáveis, seria interessante trocar essas pedras por algo mais leve. Talvez por isso tenha surgido outra boa idéia – pensar que três ovelhas poderiam ser representadas por um registro gráfico, como I I I. Além disso, este mesmo registro serviria para três pássaros, três pedras ou qualquer outro conjunto de três objetos. Usar um mesmo registro para uma mesma quantidade de coisas diferentes (uma construção abstrata!) foi um grande avanço. O homem ainda se deparou, no entanto, com a necessidade de registrar quantidades cada vez maiores – um novo desafio, pois seus registros eram limitados (pedras,entalhes, partes do corpo humano, desenhos, etc.). O difícil problema a ser resolvido pelo ser humano foi, então, como designar números cada vez maiores, usando poucos símbolos? Esta tarefa foi cumprida com registros concretos e depois registros orais (fala) e por escrito. Muitas civilizações, ao longo da história, criaram seus próprios registros, até que se chegou à forma de grafar os números que utilizamos até hoje, um sistema posicional, denominado Sistema Decimal de Numeração,que vamos rever neste fascículo.
Esta conversa inicial sobre os números já nos faz imaginar que os homens passaram por várias etapas e dificuldades no desenvolvimento da Matemática. Sabe-se também que nem sempre as dificuldades e os impasses foram contornados ou solucionados com eficiência e rapidez. Um processo similar acontece com cada aluno, que vai reconstruir este conhecimento passando por erros e acertos.

Tarefa 2


O texto tratou de representações dos números. Além disso, vocês leram que nosso sistema é decimal e posicional. Agora, expliquem com suas próprias palavras o que esta afirmação significa. 2. O olhar dos alunos
Você já observou crianças pequenas contando? Quando contam uma coleção de objetos, “recitam” números, muitas vezes “saltando” alguns e repetindo outros. Se os objetos estão espalhados,elas costumam contar alguns objetos mais de uma vez e deixar de contar outros. Além disso,não é claro para algumas quando devem parar a contagem. Crianças neste estágio ainda não desenvolveram o conceito de número, mas ele está presente em suas vidas – e isso incentiva suas primeiras tentativas de contagem. As crianças levam para a escola essa “vontade” de contar que deve ser incentivada e explorada. A seguir, vamos relatar alguns casos que exemplificam diferentes etapas da construção do conceito de números pelas crianças.
Episódio 1
A professora deu um montinho de 6 fichas para Alice e um de 7 fichas para Daniel. A professora pergunta quem ganhou mais fichas. Alice e Daniel organizam suas fichas lado a lado, como você pode ver na ilustração, e respondem:

· Alice: “O Dani.”

· Daniel: “Eu! ... Tenho 7 e Alice só tem 6.”

Quando questionados sobre quantas fichas Daniel tem a mais do

que Alice, eles respondem:

· Alice: “Sete” (apontando para a ficha não emparelhada)

· Daniel: “Uma” (apontando para a mesma ficha)

Tarefa 3
Vamos analisar o trabalho de Alice. O que ela acerta? Por que ela erra?

Episódio 2


Juliana tenta escrever vinte e um, número ditado por sua professora.


2 􀀗 o dois é usado no vinte porque depois de um vem


dois. O 17, 16 e 19 são com um, então o vinte é com dois”
Observe que Juliana escreve errado o número 21, mas justifica, por comparação com outros


números, o uso do algarismo dois para escrever o vinte.
 
Tarefa 4


Vamos analisar o trabalho de Juliana. O que ela acerta? Por que ela erra?

Episódio 3
Mariana tentou escrever o ano de nascimento de sua mãe: 1972. Veja o resultado, e os comentários


dela:

􀀗“O zero – ele que dá o mil. O um – se ele não for


companheiro do zero, não fica mil – fica um”

Tarefa 5
Vamos analisar o trabalho de Mariana. O que ela acerta? Por que ela erra?


(atividades sobre esse assunto continuam na próxima postagem).

Baixe o conteudo desta postagem em documento de word clicando no botão download:



Nenhum comentário:

Postar um comentário